Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The South American Dry Diagonal, also called the Diagonal of Open Formations, is a large region of seasonally dry vegetation extending from northeastern Brazil to northern Argentina, comprising the Caatinga, Cerrado, and Chaco subregions. A growing body of phylogeography literature has determined that a complex history of climatic changes coupled with more ancient geological events has produced a diverse and endemic‐rich Dry Diagonal biota. However, the exact drivers are still under investigation, and their relative strengths and effects are controversial. Pleistocene climatic fluctuations structured lineages via vegetation shifts, refugium formation, and corridors between the Amazon and Atlantic forests. In some taxa, older geological events, such as the reconfiguration of the São Francisco River, uplift of the Central Brazilian Plateau, or the Miocene inundation of the Chaco by marine incursions, were more important. Here, we review the Dry Diagonal phylogeography literature, discussing each hypothesized driver of diversification and assessing degree of support. Few studies statistically test these hypotheses, with most support drawn from associating encountered phylogeographic patterns such as population structure with the timing of ancient geoclimatic events. Across statistical studies, most hypotheses are well supported, with the exception of the Pleistocene Arc Hypothesis. However, taxonomic and regional biases persist, such as a proportional overabundance of herpetofauna studies, and the under‐representation of Chaco studies. Overall, both Pleistocene climate change and Neogene geological events shaped the evolution of the Dry Diagonal biota, though the precise effects are regionally and taxonomically varied. We encourage further use of model‐based analyses to test evolutionary scenarios, as well as interdisciplinary collaborations to progress the field beyond its current focus on the traditional set of geoclimatic hypotheses.more » « less
-
Free, publicly-accessible full text available December 1, 2025
-
Abstract AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. LocationAmazonia. TaxonAngiosperms (Magnoliids; Monocots; Eudicots). MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega‐phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white‐sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long‐standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.more » « less
An official website of the United States government
